extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×D7) = D7×Dic6 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4- | C6.1(C2^2xD7) | 336,137 |
C6.2(C22×D7) = D28⋊5S3 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4- | C6.2(C2^2xD7) | 336,138 |
C6.3(C22×D7) = D28⋊S3 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.3(C2^2xD7) | 336,139 |
C6.4(C22×D7) = S3×Dic14 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4- | C6.4(C2^2xD7) | 336,140 |
C6.5(C22×D7) = D12⋊D7 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.5(C2^2xD7) | 336,141 |
C6.6(C22×D7) = D84⋊C2 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4+ | C6.6(C2^2xD7) | 336,142 |
C6.7(C22×D7) = D21⋊Q8 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.7(C2^2xD7) | 336,143 |
C6.8(C22×D7) = D6.D14 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.8(C2^2xD7) | 336,144 |
C6.9(C22×D7) = D12⋊5D7 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4- | C6.9(C2^2xD7) | 336,145 |
C6.10(C22×D7) = D14.D6 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4+ | C6.10(C2^2xD7) | 336,146 |
C6.11(C22×D7) = C4×S3×D7 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4 | C6.11(C2^2xD7) | 336,147 |
C6.12(C22×D7) = D7×D12 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4+ | C6.12(C2^2xD7) | 336,148 |
C6.13(C22×D7) = S3×D28 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4+ | C6.13(C2^2xD7) | 336,149 |
C6.14(C22×D7) = C28⋊D6 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4 | C6.14(C2^2xD7) | 336,150 |
C6.15(C22×D7) = C2×Dic3×D7 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.15(C2^2xD7) | 336,151 |
C6.16(C22×D7) = Dic7.D6 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.16(C2^2xD7) | 336,152 |
C6.17(C22×D7) = C42.C23 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4- | C6.17(C2^2xD7) | 336,153 |
C6.18(C22×D7) = C2×S3×Dic7 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.18(C2^2xD7) | 336,154 |
C6.19(C22×D7) = Dic3.D14 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | 4 | C6.19(C2^2xD7) | 336,155 |
C6.20(C22×D7) = C2×D21⋊C4 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.20(C2^2xD7) | 336,156 |
C6.21(C22×D7) = C2×C21⋊D4 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.21(C2^2xD7) | 336,157 |
C6.22(C22×D7) = C2×C3⋊D28 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.22(C2^2xD7) | 336,158 |
C6.23(C22×D7) = C2×C7⋊D12 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 168 | | C6.23(C2^2xD7) | 336,159 |
C6.24(C22×D7) = C2×C21⋊Q8 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 336 | | C6.24(C2^2xD7) | 336,160 |
C6.25(C22×D7) = D7×C3⋊D4 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4 | C6.25(C2^2xD7) | 336,161 |
C6.26(C22×D7) = S3×C7⋊D4 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4 | C6.26(C2^2xD7) | 336,162 |
C6.27(C22×D7) = D6⋊D14 | φ: C22×D7/D14 → C2 ⊆ Aut C6 | 84 | 4+ | C6.27(C2^2xD7) | 336,163 |
C6.28(C22×D7) = C2×Dic42 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.28(C2^2xD7) | 336,194 |
C6.29(C22×D7) = C2×C4×D21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.29(C2^2xD7) | 336,195 |
C6.30(C22×D7) = C2×D84 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.30(C2^2xD7) | 336,196 |
C6.31(C22×D7) = D84⋊11C2 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | 2 | C6.31(C2^2xD7) | 336,197 |
C6.32(C22×D7) = D4×D21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 84 | 4+ | C6.32(C2^2xD7) | 336,198 |
C6.33(C22×D7) = D4⋊2D21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | 4- | C6.33(C2^2xD7) | 336,199 |
C6.34(C22×D7) = Q8×D21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | 4- | C6.34(C2^2xD7) | 336,200 |
C6.35(C22×D7) = Q8⋊3D21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | 4+ | C6.35(C2^2xD7) | 336,201 |
C6.36(C22×D7) = C22×Dic21 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.36(C2^2xD7) | 336,202 |
C6.37(C22×D7) = C2×C21⋊7D4 | φ: C22×D7/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.37(C2^2xD7) | 336,203 |
C6.38(C22×D7) = C6×Dic14 | central extension (φ=1) | 336 | | C6.38(C2^2xD7) | 336,174 |
C6.39(C22×D7) = D7×C2×C12 | central extension (φ=1) | 168 | | C6.39(C2^2xD7) | 336,175 |
C6.40(C22×D7) = C6×D28 | central extension (φ=1) | 168 | | C6.40(C2^2xD7) | 336,176 |
C6.41(C22×D7) = C3×C4○D28 | central extension (φ=1) | 168 | 2 | C6.41(C2^2xD7) | 336,177 |
C6.42(C22×D7) = C3×D4×D7 | central extension (φ=1) | 84 | 4 | C6.42(C2^2xD7) | 336,178 |
C6.43(C22×D7) = C3×D4⋊2D7 | central extension (φ=1) | 168 | 4 | C6.43(C2^2xD7) | 336,179 |
C6.44(C22×D7) = C3×Q8×D7 | central extension (φ=1) | 168 | 4 | C6.44(C2^2xD7) | 336,180 |
C6.45(C22×D7) = C3×Q8⋊2D7 | central extension (φ=1) | 168 | 4 | C6.45(C2^2xD7) | 336,181 |
C6.46(C22×D7) = C2×C6×Dic7 | central extension (φ=1) | 336 | | C6.46(C2^2xD7) | 336,182 |
C6.47(C22×D7) = C6×C7⋊D4 | central extension (φ=1) | 168 | | C6.47(C2^2xD7) | 336,183 |